Observations of

Collaborators: J. D. Gelfand B. M. Gaensler D. J. Helfand O. C. de Jager S. M. LaMassa A. Lemiere S. P. Reynolds T. Temim

Pulsar Wind Nebulae

Patrick Slane (CfA)

I. Spatial Structure

II. Spectral Structure

III. Evolution

PWNe and Their SNRs

- Pulsar Wind
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms
- Supernova Remnant
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; energy distribution of particles in nebula tracks evolution; instabilities at PWN/ejecta interface may allow particle escape

Patrick Slane (CfA)

G292.0+1.8: A Prototypical Composite SNR

Park et al. 2007

Chandra/ACIS

Red: Ο Lyα, Ne Heα Orange: Ne Lyα Green: Mg Heα Blue: Si Heα, S Heα

Patrick Slane (CfA)

4.0-7.0 keV

Pulsar Wind Nebulae

- Pulsar accelerates particle wind
 - wind inflates bubble of particles and magnetic flux
 - particle flow in B-field creates synchrotron nebula

Patrick Slane (CfA)

- Expansion boundary condition at R_w forces wind termination shock at R_N
 - wind goes from v = c/3 inside R_w to $v = R_N/t$ at outer boundary
- Pulsar wind is confined by pressure in nebula
 - wind termination shock

$$R_{w} = \left[\frac{\dot{E}}{4\pi cp_{N}}\right]^{1/2}$$

obtain by integrating radio spectrum

• To meet both flow conditions and X-ray luminosity, upstream wind must be particle-dominated (KC84)

$$\sigma = \frac{B^2}{4\pi\rho\gamma^2 c^2} << 1$$

Jet/Torus Structure in PWNe

Jet/Torus Structure in PWNe

- Anisotropic flux with maximum energy flux in equatorial zone
 - radial particle outflow
 - striped wind from Poynting flux decreases away from equator

$$F \approx \frac{\Omega^2 \psi_0^2}{4\pi c^2 R^2} \left(\sin^2 \theta + \frac{1}{\sigma_0} \right)$$

 Magnetic tension in equatorial plane results in elongation along rotation axis

 Polar jets form, subject to kink instabilities

Jet/Torus Structure in PWNe

Crab Nebula (Chandra) 25 Intensity (cts arcsec⁻²) 0 $v/c = 0.40 \pm 0.12$ 10 5 200 100 300 0

Position Angle (degree)

G54.1+0.3 (Chandra)

Lu et al. 2002

 Doppler beaming and geometry indicate rapid flows:
v = 0.4c

Patrick Slane (CfA)

The Surrounding Ejecta: Crab Nebula

Patrick Slane (CfA)

The Surrounding Ejecta: Crab Nebula

Patrick Slane (CfA)

The Surrounding Ejecta: 3C 58

- Chandra reveals complex structure of wind shock zone and surroundings
- Spectrum reveals ejecta shell with enhanced Ne and Mg
 - PWN expansion sweeps up and heats cold ejecta

- Mass and temperature of swept-up ejecta suggests an age of ~2400 yr and a Type IIP progenitor, similar to that for Crab (Chevalier 2005)
- Temperature appears lower than expected based on radio/optical data

Patrick Slane (CfA)

3C 58 Expansion w/ IXO

- Measure velocity broadening to determine age based on size

 connect with evolution to determine
 - initial spin and spindown properties
- Maximum velocities in optical are 900 km s⁻¹
 - with 2.7 eV resolution, we will resolve back and front shells and measure v

NASA/MSFC 2009

- I. Spatial Structure
- II. Spectral Structure
- III. Evolution

• Spin-down power is injected into the PWN at a time-dependent rate

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

• Assume power law input spectrum:

 $Q(t) = Q_0(t) (E_e / E_b)^{-\alpha}$

- Note: MHD models require γ =10⁶ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

 Spin-down power is injected into the PWN at a time-dependent rate

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

• Assume power law input spectrum:

 $Q(t) = Q_0(t) (E_e / E_b)^{-\alpha}$

- Note: MHD models require $\gamma = 10^6$ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

 Spin-down power is injected into the PWN at a time-dependent rate

$$\dot{E} = I\Omega\dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}$$

• Assume power law input spectrum:

 $Q(t) = Q_0(t) (E_e / E_b)^{-\alpha}$

- Note: MHD models require γ=10⁶ in upstream wind too high to explain radio emission; there may be two electron populations
- Get associated synchrotron and IC emission from electron population evolved nebula
 - note X-ray synchrotron losses beyond cooling break
 - joint fitting of synchrotron and IC spectra give B

NASA/MSFC 2009

A Point About Injection

- Standard assumption is a power law input electron spectrum
 - this produces synchrotron break where synchrotron lifetime of particles equals age of PWN
- If injection spectrum has additional structure (e.g. lower energy break), this imprints itself onto the nebula spectrum
 - get PWN spectrum with multiple breaks

NASA/MSFC 2009

Broadband Observations of 3C 58

• 3C 58 is a bright, young PWN

- morphology similar to radio/x-ray; suggests low magnetic field
- PWN and torus observed in Spitzer/IRAC

NASA/MSFC 2009

Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC
- Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR
- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum

NASA/MSFC 2009

Fermi Studies of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC
- Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR
- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum
- Fermi LAT band probes CMB IC emission from ~0.6 TeV electrons
 - this probes electrons from the unseen synchrotron region around E^{syn} = 0.4 eV where injection is particularly complex

NASA/MSFC 2009

The Fate of Particles in PWNe

- Simple MHD flow fails to properly account for distribution of energetic particles inferred from X-rays
 - synchrotron cooling much faster than flow for energetic particles
 - somehow, energetic particles are transported to larger radii than predicted
- Flow pattern appears to be more complex than revealed in 1-D and 2-D hydro/MHD simulations
 - more extensive modeling required, including effects of diffusion and geometry of magnetic field

Patrick Slane (CfA)

- I. Spatial Structure
- II. Spectral Structure
- III. Evolution

- Vela X is the PWN produced by the Vela pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock
- Elongated "cocoon-like" hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet

Patrick Slane (CfA)

Evolution in an SNR: Vela X

• XMM spectrum shows nonthermal <u>and</u> ejecta-rich thermal emission from cocoon - reverse-shock crushed PWN and mixed in ejecta? R-T filaments providing radial B field?

- Broadband measurements appear consistent with synchrotron and I–C emission from power law particle spectrum w/ two spectral breaks, <u>or two populations</u>
 - density too low for pion-production to provide observed γ -ray flux
 - magnetic field very low (5 μ G)

Patrick Slane (CfA)

Understanding Vela X: XMM

- XMM large project (400 ks) will map Vela X to study ejecta and nonthermal emission
- Radio and VHE spectrum for entire PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Patrick Slane (CfA)

Understanding Vela X: Fermi

- XMM large project (400 ks) will map Vela X to study ejecta and nonthermal emission
- Radio and VHE spectrum for entire PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons

Patrick Slane (CfA)

The End Game: TeV PWNe

- HESS observations have revealed a population of extended TeV sources that appear to be late-phase PWNe
 - <u>large</u> diameter (~1 deg), associated with pulsars or compact X-ray sources, but with small, faint X-ray nebulae
- Modeling indicates very low magnetic fields with loss breaks at low energies
 - these sources may be the signature of PWNe beginning to merge w/ ISM
 - observations in X-ray and lower-energy γ -ray band will test this picture

Conclusions

I. Spatial Structure

- Recent observational work has revealed underlying PWN structure that defines the system geometry and identifies PWN shock regions
 - constrain particle flows, field geometry, jet formation

II. Spectral Structure

- Modeling of broadband emission constrains evolution of particles and B field
 - synchrotron and inverse-Compton emission places strong constraints on the underlying particle spectrum and magnetic field
 - modeling form of injection spectrum and full evolution of particles still in its infancy
 - origin of radio-emitting particles still uncertain

III. Evolution

- TeV observations have revealed emission from known PWNe as well as identifying a population of large-diameter nebulae not previously seen in other bands
 - late-phase PWNe disrupted by the SNR reverse shock
 - TeV and Fermi observations, and continued radio and X-ray observations promise dramatic results in understanding the lives of PWNe

Connecting the Synchrotron and IC Emission

Patrick Slane (CfA)

• More completely, assume wind injected at termination shock, with radial particle distribution and latitude-dependent magnetic component:

$$\sigma = \frac{B^2}{4\pi\rho\gamma^2 c^2} = \sigma(\theta)$$

 Evolve nebula considering radiative and adiabatic losses to obtain time- and spatiallydependent electron spectrum and B field (e.g. Volpi et al. 2008)

