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Why so Interesti ng’?

Due to their duration and
dynamics, Binary Neutron
Stars are very good sources
for gravitational wave
detectors such as Virgo
(Italy) and Ligo (USA)

Virgo (Pisa, ltaly)

Binary neutron stars mergers are
also possible sources for short
gamma-ray bursts
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Wlﬂy GW are i nteresting?

* Gravitational waves (6W) are space-time perturbations
produced by the motion of compact objects

Because of their nature they can reach us unperturbed from
the most remote parts of the universe

*They can then provide information on the inner structure of
objects such as Neutron Stars

*They can also provide first direct evidence of BH existence

*Like X-ray and y-ray astronomy they will open a new window
on the universe
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Wlﬁg do we need Numerical Rclativitg?

* The most powerful sources of GWs involve very compact
objects such as Neutron Stars (NS) and Black Holes (BH)

* Their dynamics is described by the equations of General
Relativistic hydrodynamics and magnetohydrodynamics

* These equations are not linear and cannot be solved
analytically: numerical relativity is necessary

*Numerical relativity can provide templates useful for GW
searches (matched filtering techniques)
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* Binary BH evolutions for many
orbits, with waveforms, energy,
angular mom., emitted, etc

Pollney, Reisswig, Rezzolla,Thornburg,
Diener, Schnetter, Seiler, Koppitz

* Development and testing of
new code for generalized
harmonic formulation of the
Einstein egs. Expected to
provide more accuracy

Szilagyi, Pollney, Rezzolla,
Thornburg, Winicour

* A careful investigation of
recoll velocity and final spin for

asymmetrical binaries
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The Whisky code

Il GR Magneto-Hydro-Dynamical Code

- Based on the

Solves the HD and MHD equations on dynamical curved
background

Uses HRSC (High Resolution Shock Capturing) methods
Can handle BH formation with or without Excision
Implements the Method of Lines

Adopts Adaptive Mesh Refinement techniques (
Implements the Constrained Transport scheme

» It's meant as an "astrophysical laboratory” to
study several different sources of gws




Matter field evolution

+ The evolution equations of the matter are given as
usual by the conservation of energy-momentum and
baryon number: pv

Y v, T

VN L
JM

where TH” = (p 4+ pe + p)ut'u” + pg"”

plus an Equation of State P=P(p,€)

*For the simulations presented here we have used during
the evolution an ideal- flund EoS P — pe(I‘ L 1) or a

polytropic EoS P = Ii,O




T[ms] = 5.82

T[M] = 621.86

6.1E+14

Density [g/cm™3]

* Balotti, Giacomazzo, f'. oz 7



Previous works

Several works in the past by Nakamura, Oohara, Shapiro, Shibata and
collaborators. Most recent ones without magnetic field:

Shibata and Taniguchi 2006, PRD 73, 064027
*more realistic EOS used
*fixed uniform grid
‘not able o compute the full signal after BH formation

*Oechslin and Janka 2007, PRL 99, 121102
‘more realistic EOS used
*SPH, conformally flat approx. to GR, different masses and spins
not able to compute the full signal after BH formation




Previous works

Works including also magnetic fields in full GR:

Anderson et al., PRD 77, 024006 (2007), PRL 100, 191101 (2008)
adaptive mesh refinement used
«initial data built by hand
*not able to follow the BH formation
*included magnetic fields (2008 paper); no waves from BH formation

*Liu et al 2008, PRD 78, 024012
eincluded magnetic fields
*no mesh refinement (“fish-eye" coords)
consistent (irrotational) initial data
*only one orbit but follow the BH formation
«second order reconstruction and low resolution




Initial Models

All the initial models are computed using the Lorene code for
unmagnetized binary NSs (Bonazzola et al. 1999):

Model M~ d (km)

low-mass 1. 45

high-mass 1. 45
Technical data for the simulations:
e polytropic EOS
* outer boundary: ~370 km
8 refinement levels; res. of finest level: ~0. | 8km
PPM for the reconstruction

Marquina flux formula
Runge Kutta (3rd-order)
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T[ms] = 0.00

I

T[M] = 0.00
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This behaviour: merger, bh, torus, is general but only
qualitatively

Quantitative differences are produced by:

- differences in the mass for the same EOS:
a binary with smaller mass will produce a HMNS which
is further away from the stability threshold and will
collapse at a later time

- differences in the EOS for the same mass
a binary with an EOS with a larger thermal internal
energy (ie hotter after merger) will have an increased
pressure support and will collapse at a later time
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Matter Dgnamics

high-mass binary low-mass binary
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Waveforms

high-mass binary
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first time the full signal from the
merger to bh has been computed

low-mass binary
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High-mass binary:
Polgtropic vs Ideal Fluid EOS

So far considered polytropic EOS which is isentropic. Entropy
cannot change and the thermal energy cannot increase

P=kp

A step forward before implementing realistic EOSs can be made
with an ideal=-fluid EOS, non-isentropic If shocks are present,
The thermal energy Is expected to Increase.

P = pe(I' — 1)
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High-mass binarg:

Polgtrol:)ic vs ldeal Fluid EOS

. d=45 km .
Polytropic EoS ViE b |deal-fluid EoS

Pseudocolor
Var: WHISKY-rho
e 0.001000

1.778e-05
3.162e-07
5.623e-09 5.623e-09
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lax: 0.0009571 Max: 0.0009571
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High-mass binary: Ideal Fluid vs Po|9tropic EOS

The increase in internal energy (produced by the shocks)
allows the produced HMNS to resist gravitational collapse.

Codlescencettora
single neutron star

Time of collapse _
for polytropic EOS

Collapse to a :
rotating BH &

0.01
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Waveforms: Ideal Fluid EOS
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lmPrin’c of the EOS: Ideal Fluid vs Polytropic
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Hgdroclynamics Instabilities

During the merger a shear interface forms across
which the velocities are discontinuous.

RIS Eads e St S WG Ml O er e CEs S{SEVIhE
Helmholtz instability).

In the presence of a poloidal magnetic field, this
determines the generation of a large toroidal magnetic
field even If the poloidal one Is small

This can have an important role in the formation of
magnetars and short gamma-ray bursts
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rho* | vorticity | rest-mass density
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H instabi ity: igh-mass binary
Note the development of vortices
in the shear boundary layer

produced at the time of the merger More evident in terms of the
1=6.091 ms L°g‘%’l weighted vorticity.
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H instabi ity: igh-mass binary
Note the development of vortices

in the shear boundary layer
produced at the time of the merger More evident in terms of the

t=6.091 ms L°9‘%’l welighted vorticity.
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Summary

*Performed long stable and accurate simulations of binary
NSs systems

* All the scenarios investigated here lead to the formation
of an hot torus around a central BH

*Extracted the full gw signal which is expected fo be
detected

*GW signal from BNSs could work as the Rosetta stone to
decipher the NS interior (e.g., the role of the EQS)

«Hydrodynamic instabilities coupled with magnetic fields can
make these objects sources of short gamma-ray bursts
(work in progress...)
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Future wor|<

*We are currently investigating different mass ratio, initial
distances, initial spins and magnetic fields

*We are also working on mixed binary systems composed by
a BH and a NS

*We will consider different orientations both for the spins
and the magnetic field

*We plan to use more realistic EOS and include neutrino
Transport

*Our main interest is to study these objects as possible
sources of short-GRB and magnetars and extract gws




